Principal Investigator

Amanda Prorok Amanda Prorok is an Assistant Professor (University Lecturer) in the Department of Computer Science and Technology, at Cambridge University, and a Fellow of Pembroke College.

She has been honored by numerous research awards, including an ERC Starting Grant, an Amazon Research Award, the EPSRC New Investigator Award, the Isaac Newton Trust Early Career Award, and several Best Paper awards. Her PhD thesis was awarded the Asea Brown Boveri (ABB) prize for the best thesis at EPFL in Computer Science. She serves as Associate Editor for IEEE Robotics and Automation Letters (R-AL) and Associate Editor for Autonomous Robots (AURO). Prior to joining Cambridge, Amanda was a postdoctoral researcher at the General Robotics, Automation, Sensing and Perception (GRASP) Laboratory at the University of Pennsylvania, USA, where she worked with Prof. Vijay Kumar. She completed her PhD at EPFL, Switzerland, with Prof. Alcherio Martinoli.


The lab's research focuses on multi-agent and multi-robot systems. Our mission is to find new ways of coordinating artificially intelligent agents (e.g., robots, vehicles, machines) to achieve common goals in shared physical and virtual spaces. This research brings in methods from machine learning, planning, and control, and has numerous applications, including automated transport and logistics, environmental monitoring, surveillance, and search.

Our research is supported by the ERC, Arm, Amazon, the Distributed and Collaborative Intelligent Systems and Technology Collaborative Research Alliance (CRA), Nokia Bell Labs, and UKRI's Engineering and Physical Sciences Research Council.


University of Cambridge
William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD, UK

asp45 at

Follow Us


Recipient of this year’s ERC Starting Grants. I am tremendously excited to work on my project, ‘gAIa’, which aims to co-optimize robotic mobility and the environment. See the story.
(Published on 09/2020)

Our research on cooperative driving is featured in BBC4 program The Hidden Wilds of the Motorway (start at 1:19:40).
(Published on 07/2020)

Recipient of this year's Amazon Research Awards, for our research on learning how to communicate to coordinate (in multi-robot systems).
(Published on 06/2020)

Feature article on our research and my personal story thus far.
(Published on 06/2020)

Delighted that our paper “Multi-Vehicle Mixed Reality Reinforcement Learning for Autonomous Multi-Lane Driving” has been selected for inclusion in the 'Best Papers' volume from AAMAS workshops, to be published by Springer.
(Published on 06/2020)

Speaking at the Workshop on Foundational Problems in Multi-robot Coordination under Uncertainty and Adversarial Attacks at ICRA, June 4, 2020.
(Published on 05/2020)

Speaking at the Workshop on Heterogeneous Multi-Robot Task Allocation and Coordination at RSS, July 12, 2020.
(Published on 04/2020)

Guest Editor for an IEEE T-RO Special Issue on Resilience in Networked Robotic Systems.
(Published on 12/2019)

Nominated as one of the 30 women in robotics you need to know about.
(Published on 10/2019)

I have been elected General Chair for the 3rd IEEE International Symposium on Multi-Robot and Multi-Agent Systems, 2021, which will be held in Cambridge, UK.
(Published on 08/2019)



PhD applicants who wish to work in my lab are encouraged to apply here.

Recent Papers

J. Blumenkamp, A. Prorok, The Emergence of Adversarial Communication in Multi-Agent Reinforcement Learning. Conference on Robot Learning (CoRL), 2020. PDF.

B. Wang, Z. Liu, Q. Li, A. Prorok, Mobile Robot Path Planning in Dynamic Environments through Globally Guided Reinforcement Learning. IEEE Robotics and Automation Letters (R-AL), vol 5:4, pp. 6932-6939, 2020. Preprint.

Q. Li, F. Gama, A. Ribeiro, A. Prorok, Graph Neural Networks for Decentralized Multi-Robot Path Planning. PDF. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020

A. Prorok, Robust Assignment Using Redundant Robots on Transport Networks with Uncertain Travel Time, IEEE Transactions on Automation Science and Engineering (T-ASE), 2020. PDF, preprint.